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Abstract We prove arbitrary integral representation π of Gauss-Manin
connection is 1-1 continuous between fibered Mg;n and the Zariski
open dense Mg,n ⊂ Mg,n of complete Hurwitz space Hg;k, and
that for any extended connection which is marked-point continuous
n-morphism ϕ-cone, with the dual ϕ∗ as morphism of graded algebras,{
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converges bounded pointwise, where the map φ zero-locus P-subcone
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Ai is the quotient of the modulo
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Z/kiZ fiber PA projectivized

bundle Ã, while φi is similar for modulo Z/kiZ, and k1 · · · kn is multiplicity
of φ along A. We then prove equivalence for versal deformations of
π with logarithmic residue resolution of poles X 7→ (CP1,∞)/Hg;k

along divisors and explicit derived category of coherent sheaves for
each irreducible component of X with multiplicity 2g′ − 2 in entire
morphism kernel Zg;k. We generalize π to (CP1,∞)/Hg;k, where Hg;k

acts by symplectomorphims. And, because the Chern classes are not
well defined for cones, we compute the Serge class for π through
inverse product of coordinate-weights divided by order of group acting:
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. With 0 → Ai → Pi →
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and therefore s
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subcone Ai with φi zero-multiplicity ki, we prove the zero-class s0
(
Ai

)
is the only non-trivial limit s, where each Ai is proven constant cone.

Keywords: Multi-logarithmic differential form, residue fiber current

‡ Grateful for the support of THE LYNN BIT FOUNDATION



2 Bernard, M.

INTRODUCTION


